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ABSTRACT

The paper addresses the basic notions of the theory of feedback and

adaptive finite element methods. An illustrative example of the finite

element method for solving nonlinear differential equation of the elliptic

type is presented. Nmerical example of regridding process is given.



1. INTRODUCTION

The notion of feedback and adaptivity in numerical computations has

attracted great attention in the recent years. All the modern ODE's solvers

for initial value problems and quadratures are feedback methods. The feedback

methods are increasingly in the focus of interest in the area of numerical

solution of PDE and computational mechanics. Many reports, preprints and

papers dealing with the adaptivity appeared recently. It seems to be that

successful computation of today's large complex problems cannot be made with-

out some kind of feedback or adaptive approach.

In general we call a numerical process a feedback process when it uses

the data in a sequential way so that the flow of computation is determined by

some feedback from the previous information obtained during the computation

(see eg. [181 [19] [201). However, such a feedback procedure is advantageous

only if it has some useful properties, for example, if it produces the re-

quired information by less work and higher reliability than the nonadaptive

process. In order to study the adaptive procedures, more precise definition

of the used notions has to be introduced, see eg. [11 [3] [16].

It is worthwhile to distinguish between the feedback and adaptive

procedures. A feedback procedure (method) is said to be adaptive if it is

optimal with respect to certain performance measure; hence the adaptivity is a

relative notion.

The analysis of a method, adaptive or nonadaptive, needs an exact

description of the class of problems which the method is designed for. The

comparison of a feedback and nonfeedback approach is also relative to the set

of the problems under consideration. It has been shown that if the class of

the problems is big enough, then in the worst case for the class (or even in

the average case) the non-feedback methods are as good as the adaptive
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methods. See e.g. [181 [20]. In this case one can conclude that the non-

feedback method will be computationally more efficient than the feedback one

(especially for parallel computation). On the other hand, as experience

shows, for the majority of practically important classes of problems adaptive

methods perform much better, they are more effective and reliable than the

nonadaptive ones.

2. FEEDBACK AD ADAPTIVITY

We discuss now the notion of feedback and adaptivity in numerical compu-

tation in more detail. These concepts were discussed in connection with the

finite element method in [1] [9]. For a more general concept see [16].

We will illustrate the introduced notions on simple example of the two

point boundary value problem:

(2.1a) -(au')" + bu f

(2.1b) u(O) u(1) - 0

where the aim is to find the approximate solution with a sufficient accuracy

measured in the energy norm.

We will illustrate the introduced notions in the connection with the h-

version of the finite element method (with elements degree p - 1).

In general, let P be the class of problems to be solved. (In our case

this class is characterized by class of functions (a, b, f).)

Denote by S the set of numerical solutions. (The set of all piecewise

linear functions of H10

An algorithm is a mapping which maps the set of problems P into the set

S * More precisely, an algorithm relates to an information operator N which

may be referred to a set of subroutines such that the information needed by

.". ."'.,x.l'i i.l :.i J' i,' , . f,['''',r" - -","; "..;, ."..e,.,: ,. .. ,: ,., " ,> J... '
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the algorithm may be computed for the given problem P (e.g. the evaluation

of a, b, f). It should be noticed that the information is, in general, only

partial. (Values of a, b, f can be computed at certain points and with

certain precision only.)

There are two kinds of information operator (see [18] [20]); the first is

the non-feedback one (in [181 it is called non-adaptive information), which

uses no information of computed results of the solution (e.g. when using a

uniform mesh). The other is the feedback information operator which uses

sequentially the information obtained earlier (e.g. the solution on the pre-

viously used meshes). However, no matter what kind of information is used, an

algorithm produces a-sequence of states (the sequence of meshes) and a

sequence of corresponding solutions (the finite element solutions). The pairs

of the states and solutions compose the trajectory of the algorithm. often w~e

also say that the sequence of the states is the trajectory. The map mapping

the previous states into a new state is called a transition operator construc-

tion of the new mesh from the old ones). In the non-feedback process the

transition operator of course makes no use of the previous states. The algo-

rithm is completely described by the structure of the transition operator.

In summary a numerical procedure consists of the following components:

1) A set of problems P ((1) with the class of admissible a, b, f).

2) The set S of the numerical solutions (piecewise linear functions of

3) The set of states X (the set of all permissible meshes A).

4) A set of information I (the pointwise values of a, b, f) and an

information operator N related to the algorithm N: N x P x X x S +~ 1.

(The subroutines which obtain the information of the problem p E P at n-th

stage, n E N, using the meshes a i E X and FE solution iii ES, i n-i).



5) Transition operator T, T: N x I + X. (Using information I the

transition operator creates a new mesh.)

6) Solution operator I, R: X x I +S. (Obtaining the FE solution for

the new mesh using information of the problem.)

7) A set of trajectories T which consists of all sequences

W - ((Aouo), (A1,Ul), ... ).

An algorithm maps any element P E P into a trajectory w E T. We mention

that we did not include (for simplicity) the stopping criterion in the

process,

A feedback algorithm is useful only if it performs better than any non-

feedback one for the set P. In [1) and [14] the notion of a performance

measure was introduced. A performance measure p is a map from the set of

trajectories into R1

A feedback algorithm is said to be adaptive (relatively to P,

S, X, u) if it is optimal for the performance measure P. (In general such

optimal algorithm does not have to exist for some particular (P, S, X, P).

Several concrete performance measures were introduced in [11 for the

finite element method. The convergence measure v was defined as binary

measure P: I + {0,1}. If the solution converges then P(W) - 1, otherwise

Y) - 0. A convergence rate measure was defined as follows: For any

problem P E P let t(n,P) be the minimal error obtainable by the mesh A

with a + I nodal points, i.e., dim(S) - m where S is the finite element

space for given mesh. The particular feedback method is optimal (w) 1 1 if

(2.2) ((Al), K(P), j = 0,1,2,...

' -'- " " '. , , , - '- '-'-. C '-. " -;%-''.-'-'-.'':"-"."." -..'O.'"- -. :' j- -) .",P)'- .
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i.e., when the error e of the finite element solution on the sequence of

meshes A constructed by the algorithm is of the same magnitude as the theo-

retically smallest possible error 4 for all P E P. In (9] we described

some concrete algorithms which are adaptive with respect to the convergence

measure (defined above) for the set P1  consisting of all problems with

0 < aO < a(x) 4 aI < , 0 ( b(x) < bI < - and f such that the exact

solution belongs to HO .

These algorithms are adaptive with respect to the convergence rate only

if the set PI is restricted to a smaller set P2. This set P2  is never-

theless broad enough to include vast majority of problems with practical sig-

nificance. In [91 we have shown an example of P E P, P f P2  such that the

algorithm produces meshes with (2.2) unbounded. Algorithm of a similar type

as discussed in [91 was implemented by the code FEARS (151 and PLTMG [10] in

the two dimensional setting.

In [14] we theoretically analyzed the feedback and adaptivity of some

algorithm based on the h-p version. We have proven the adaptivity with re-

spect to the convergence measure for a large class P. The convergence rate

measure was defined slightly different than before. We considered the set

P3  of problems with solutions which are analytic except a finite number of

points x0  where the solution is of the type Ix - x01, a > .5.

We have shown that for any P E P3  and any mesh A and

p-distribution

(2.3) O(n,P) ;o Const(P) -I r0Va.)

n

where

ro (,- 1)2

and n is the number of degrees of freedom (i.e., dimension of the used

finite element space).



The algorithm which we studied and implemented in [14] leads to an error

2.4) e - const(P)(W(n,P))T

rith y independent of P and a. Combining (2.3) and (2.4) we immediately

iee that our algorithm is adaptive with respect to P3  and obviously defined

:he convergence rate measure. We can also readily see that any non-feedback

Llgorithm cannot give an exponential rate of convergence for an arbitrary

)roblem in this set.

Various feedback algorithms appeared in the literature and are available

is codes. Nevertheless there is no available analysis of the adaptive features

in the sense explained above although numerical experimentation with these

codes can give very good insight and lead to the proper conjectures.

3. A PARTICULAR MODEL PROBLEM

Let us be interested in the nonlinear problem

d
(3.1a) d a(u',u,x) + b(u,x) = f(x,X) X E I = (0.1)• d~x

(3.1b) u(O) -u() 0

with the aim to find the solution u(x,X) for x E I in the given accuracy

T in the H1  norm for all 0 X 4 X 0  We will describe briefly the main

parts of a feedback procedure for solving (3.1a) (3.1b). Although (3.1) is

one dimensional problem, the main ideas which will be explained here are not

one dimensional and they are being implemented in a two dimensional setting.

The solution is computed by the continuation method using (for a fixed mesh)

adaptive procedures as PITCON (see eg. [171). The problem (3.1) has some

common features with the methods for solving parabolic equations. The con-

tinuation parameter g plays analogous role as the time t in the parabolic

, ,u ~ ~~~~~~~ ~~~.... . .. .. . . . . . . .. . . . .."" ' 1 'it d"' ". .. . . . . . .. . . . . . ... "
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oblem and will be called "time" for convenience. Of course there are also

sential differences here too. For more about adaptive procedures for para-

lic equations we refer e.g. to (ill.

In the following we shall discuss a feedback mesh regridding procedure.

is clear that while the "time" parameter X advances a fixed mesh in

neral cannot work well and the mesh is necessary to be regridded. However,

io frequent change of mesh also increases the cost of computation. Therefore

shall study the regridding strategy (including the criterion of mesh

tality) as well as the adaptivity in this procedure.

THE MESH DENSITY AND OPTIMAL MESH

We now discuss on the optimal mesh for the linearized problems. We

isume that the h-version FEM is used for solving the problem, and the poly-

)mial degree of the elements is assumed to be p. For one dimensional case

is problem was considered in [71, [13], by using the graded meshes.

A graded mesh A is obtained by a given grading function g(x) and

itensity m(A) (i.e., number of elements in A). For example, on [0,11,

ie nodal points of a mesh A are

xi - g(-), i ,

iere g is a strictly increasing continuous function with g(O) = 0, g(1)

The optimal grading function is directly related to some derivatives of

ie function u(x) (see e.g. [7] [81). We have shown in [13] (see also [8]

)r example), that if u(x) - xa, a > .5, the function

g(x) = X$

p p+ .5

a a- .5
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he optimal grading function. It is easy to show that in this case

2
d 9 C-I u(p+l) x 2p+l

-e g- x) is the inverse function to g(x). The similar expression holds

reneral under proper assumptions (see [71 (81).

This approach is obviously only one dimensional. Let us modify it so

it can be easily transfered into more dimensions. For this reason we

L introduce the notion of the mesh density function (briefly the density).

Let J c I be any interval and {Ak} be a sequence of meshes. Let

.,J) be the number of elements of the mesh Ak  contained in j and

ime that

3) (J) - lim k

k+ m(Ak)

well defined.

Function S(J) can be extended to a a-additive set function and we will

Lme that it is differentiable. Denote by 6(x) its derivative. This

ns that

6(J)
4) 6(x) lim

xEJ

sts for any x E I. We will call the function 6(x) the mesh density

ction for the sequence of meshes Ak. If the grading function exists, then

is easy to see that

=d -1

5) 6(x) -dg (x)

hence
2

6) 6(x) Clu(P+)(x) 1 2p+1

"*' ""* -" '-,% " '° 
" "

°% -' * "''i.* J ." ."".' o '.'*"- . "" ."",".'" -"'" ' , '"' ""r" -' .°- *" '"- -.



22

TABLE 1.

m C X I mesh action P2 (k)

1 3.0 64 0.04003 1.3599 1.1176 not O.K. regridded

1 3.0 48 0.04458 1.0002 1.0591 O.K. 3.7382

2 3.5 48 0.04888 1.0293 1.0114 O.K 2.4349

3 4.0 48 0.05638 1.1069 0.9417 not O.K regridded

3 4.0 55 0.04086 1.0058 1.1063 O.K. 3.1482

4 4.5 55 0.04222 1.0120 1.0882 O.K. 2.6894

5 5.0 55 0.04682 1.0746 1.0335 O.K. 2.4239

6 5.5 55 0.05469 1.1803 0.9562 not O.K. regridded

6 5.5 58 0.03977 1.0180 1.1213 O.K. 2.8321

7 6.0 58 0.03821 1.0023 1.1440 O.K. 2.6480

8 6.5 58 0.03955 1.0386 1.1244 O.K. 2.5254

9 7.0 58 0.04330 1.1188 1.0746 not O.K. intact 2.4417

10 7.5 58 0.04900 1.2320 1.0101 not O.K. intact 2.3844

11 8.0 58 0.05638 1.3689 0.9417 not O.K. regridded

11 8.0 57 0.03963 1.0673 1.1232 O.K. 2.6380

12 8.5 57 0.03452 1.0259 1.2035 not O.K. intact 2.5877

13 9.0 57 0.03099 1.0052 1.2703 not O.K. regridded

13 9.0 44 0.04460 1.0076 1.0589 O.K. 2.6540

14 9.5 44 0.04247 1.0003 1.0850 O.K. 2.5827

15 10.0 44 0.04083 1.0089 1.1066 O.K. 2.5254

16 11.0 44 0.03800 1.0571 1.0147 O.K. 2.4974

It is possible that the new mesh could be unsuccessful, for example, it

id cause divergence in the iteration of finding the solution, or it could

a a solution with low accuracy. In these cases one has to adjust the

h. We will not go into detail of the adjusting procedure.

According to our assumption, when considering a process which constructs

imal mesh at each step, the ratio P2 (k) - I + 0 3. Our feedback
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particular let

2) D (xX) 10

1 + lO[x - sin X/101

I select the following parameters steering the described feedback process:

error tolerance T - .05

maximal mesh quality indicators *ax 1.2

Xmax 1.1

the cost control parameters X1 2

X2 1.2

the cost exponent u- 2

the cost regridding factor e = 2

the maximal number of predicted steps kmax 10

.e mesh is constructed in a binery tree structure to simulate data structure

ied in the two dimensional setting. This means that any node of the mesh can

obtained by a successive bisection of elements. The base mesh which is

.xed in the regridding process has level 3 and hence it consits of 8

iterval of the size 1/8.

The results are shown in Table 1. We see that the regridding is trigered

various reasons

a) The error is not acceptable (* < 1): see mesh No. 3, 6, 11.

b) The mesh shape is bad (X > Xmax): see mesh No. 1.

c) The mesh intensity is too high (* > *max): see mesh No. 13.

Sometimes the mesh quality indicators exceed the given criteria but the

Pst analysis shows that the mesh is better being kept intact, see mesh No. 9,

, 12.

'A *- ..S-.. .". . -- ... . . . . . . ... . .',. . . . . . . . ..". . . . . . . . . ..". .. 1 - "- " ' " 
"

-.- 
"- '

-
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ntensity of the optimal mesh at X (to achieve the given accuracy T).

et Aj, J - 1,2,... be the continuation steps produced by PITCON, for

xample. The ideal total cost (in k steps) will be

10.4) C (k) - k
total - C(M0,T(Xj)).J.0

We will consider the ratio

Ctoa (k)

10.5) P(k) ttal
Cotal(k)

Lnd the measure P 2 = 1 if P2(k) 4 y (for some given X > 1) for all

> k0 , 12 - 0 otherwise.

We can also consider the measure with respect to the time inverval

[A1,A2] in an analogue way.

The important question is whether p2(k) < 1 + e, i.e., the cost of our

Eeedback is less than the cost when the mesh is changed to be optimal at each

;tep.

The adaptivity of the proposed feedback can be analyzed under various

;tringent assumptions. Nevertheless we will not go into this analysis.

Enstead, we show a numerical example computed by a code we wrote.

L I. A WINKIICAL EXAMPLE

As we have seen, the entire process is characterized by the (unnormal-

Lzed) density function D0(x,X). We can simulate the process of regridding

issuming that the degree of element p and D0 (x,X) is given. Then for p

Z the error indicator n(l) is given by

2()- M 14 f [D0(x, )]5dx.

.-. Z. ZeZ* Z
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To define properly the measure u, we have to define exactly the

cost. There are various possibilities. We will adopt the following

definitions:

Let Xj, j = 1,2,... be the continuation steps, A be the meshes at

X J, These meshes are not necessarily different, we assume that the regrid-

dings only occur at XjV, v - 1,2, ... . Then we define the total cost in

k continuation steps to be

k
(10.1) Ctotal (k) - (1 +I a e)C(m

J-1

where a - 1 if j - JV (i.e., regridding occurs), aj - 0 otherwise,

and m- m(Aj) is the intensity of mesh A J

We can also consider the cost in certain time interval [A1,A2]:

(10.2) Ctotal(AiA 2 ) = I (I + aje)C(m ).
A1 Xj 4A2

The cost of the feedback and non-feedback methods will be denoted by

superscripts a and n respectively, then we define

Ca (k)

(10.3) P1(k) total
1Cn W

Ctotal(

and 41 - 1 if pl(k) 4 y (for some given 0 < y < 1) for all k 0 ko, 1,

- 0 otherwise.

An analogue of (10.3) may also be made for the total cost defined by

(10.2).

Another measure V2 can compare the cost of the introduced feedback

procedure with the ideal cost of the method when optimal meshes are used at

every step (neglecting the cost of regridding). Let mOT (A) be the

• ..... .., .. ... .., ... ... , ... ..-.. . , r , ., - , .. . . ... .. ,

.-. /.. ' "."*.'.. .'..' ;.," '. .* ." .", , ". *." % "". C."" ." .,. ""''' ' .... ' .'.
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10. THE ADLP TVTY OF THE UZRDIIG PROCESS

It is clear that the process described in Section 9 is a feedback

process. We will first include it into the frame discussed in Section 2. The

set of problems is defined by the set of functions a, b, f in (3.1a). The

solution set is the finite element space of elements of degree p on the

meshes A. The states are the pairs (X,A) where A is the mesh at time

X. The information operator consists of a set of subroutines which evaluate

the involved functions to obtain necessary information described in the last

section. The transition operator makes decision of regridding and construct

new meshes when necessary. The solution operator then computes the finite

element solution on the given mesh X.

In solving the nonlinear problem by continuation (for example, by

PITCON), another feedback process is involved. We shall not address here the

question of adaptivity of this continuation process.

The regridding process itself is very complex. For the adaptivity

analysis various performance measures can be considered. Numerical exper-

iments can be useful for formulation some conjectures for theoretical

investigations.

Like the convergence measure discusssed earlier, we introduce here a

natural performance measure U0 such that if all solutions in the trajectory

satisfy given tolerance T (which may be restricted to some range, say 1%-

10%), then p0 - 1, otherwise -0 - 0. The algorithm is said to be adaptive

with respect to v0  if P0 - I for all problems P E P0. It is clear that

our algoritm is adaptive for a large class of problems P0.

Another natural performance measure compares the cost of our feedback

procedure with the cost of the computation when fixed mesh is used. We define

the measure U, so that v,- 1 if the cost of the feedback is not larger

than the cost of the fixed mesh approach. Otherwise u1 - 0.

." ." .- '. . .-. ,.- ...- . .' ; - .-...- ...... . . . .. ,.." ",'..'... ...... . . -*..*; %....-.'.,,- .- .
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(8.4) c - C(MO,T)

where mO,T  is the intensity of optimal mesh at X0.

Assuming that the average step AX for X (which is selected in a

feedback fashion) will stay the same as in the past, we will compute a

density D 001 W and the corresponding intensity m X'X" as in the last
p

section for each X - X0 + kAX, k - 0,1,2,... The predicted cost for this

mesh is then

Ck C(m 0  ) X- + kAX).
p0

This procedure is proceeded until k - kC:

Ck" > min{C/c, I2Ci},

and

cold
i

K = 1 C--

and K I, K 2 > 1 are given a-priori, Cold  is the ideal cost when last mesh

regridding occurred. The predicted mesh will be constructed from the density

D x) and m with X - X0 + (k -1)AX,

Roughly speaking, the meaning of the above selection is that the cost of

a new mesh should not exceed too much the cost of the ideal mesh and should

take into account the change of the optimal mesh.

9. THE NAIN FLOW OF REGRIDDINM PROCESS

Here we briefly show the main flow of the feedback algorithm for the

design of the mesh.

*%. ~.';. ."-*.:. i
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6) Make a cost analysis for determining A1 . (See Section 8.)

7) Compute the uncertainty function p(x,X) of the prediction by

comparing the expected density with the ideal one (after being computed).

8) Design the new mesh if the current mesh has to be changed.

8. THE COST ANALYSIS

The cost of the adaptive mesh consists of two parts:

1) The cost of computation by the continuation method (for example by

PITCON) per step:

(8.1) C = C(m) = M .

where C(m) is the cost function which is supposed to be only depending on the

intensity.

2) The cost of regridding the mesh which will be assumed as a multiple

of the cost of the solution:

(8.2) C0  = C(m).

A mesh is considered to be changed if either it cannot give the required

accuracy or it costs too much (although the error is admissible). The first

case is characterized by * < 1, and the latter is determined by the

criteria X > Xmax or X > *max when Xmax and *max are given a-priori.

We define the cost for the current mesh (at X0)

co if X < 1,
(8.3) C c M

(C(mc ) otherwise,

where mc is the intensity of the current mesh.

Furthermore, the ideal cost Ci (at XO) is given by
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turbance of an optimal mesh causes changes of accuracy of second degree (see

[7]), we do not need to know the optimal density too accurately. It is

computationally advantageous to work only with meshes which have density given

on the base mesh. For example, if the elements of degree p - 2 are used for

the computation of the solution, we will assume that the density is given by

the same 2 degree element function on the base mesh and the density is given

by its values in the nodal points of the base mesh.

The prediction of the density goes as follows:

1) Define piecewise constant function D0 (x,X), X X 0 on the mesh

A so that

1

D 0(x,X) -tx E J

2) By a fitting procedure construct the (unnormalized) density function

D0 (x,X), called ideal density, on the base mesh.

3) Given function D0 (x,X) for X 4 X0 (which is given by its values

in the nodal points of the base mesh), extrapolate it for X > X0  (by an

extrapolation technique which preserves, for example, its positivity), and

denote it by De(x,X) (called the expected density).

4) A new mesh, called predicted mesh, is designed for X0 4 X 4 X1, by

(6.2)

Dp (x) - max D (x,X).pO • I e
P 0 4W1e

5) Compute the intensity m leading to the prescribed accuracy

using mesh D (x)
p

NI 1) 0 o, Y (De (x,X))2p+l 1/2p

m 1) max (f D (x)dx) [f 2p dx]
X,0 4X 

(1 P (20Xp (x))
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and
D(XOIx 1)(A 0 ,A 1 ) D O  (x)

(6.3) a0  (x) 0

Furthermore, the intensity used in (A0 A1] will be determined by

(X0 ,l) a 1+ 1/2p (60 (x,X))
2p+l 1/2p0max 1p 0f(O ) dx

A (A(A (A0, 1  2pdxX0 4XX1 T ( (x))

7. DENSITY PREDICTION

The problem (3.1) is solved by a continuation method with respect to the

parameter X. This means that we know the approximate solution for A X A0

and want to predict the behaviour of the solution for A > A0 and design an

optimal mesh for A0 < A < A1' where X, will be properly chosen. The

prediction process is essentially a pattern recognition which is composed by

learning, classification, prediction and correction. Some ideas of pattern

recognition were used in [11] where the concepts of the shape and intensity of

a mesh were introduced.

As we have seen above the shape of the mesh is determined by its

density. The function D0 (x,X) defined by (4.10) is an optimal density up to

a multiplicative factor -. It also contains the information about optimalW 0

intensity using (5.5) with its approximate version

1 1+ 11 1+ 1

m0,T P - " 0 2p . T p (f (D 0 (x))2p+l) 1 7

I

We will approximate DO(x) by a (finite element) function on a relatively

coarse mesh called base mesh which does not change with A. Because a per-

.. .-,. , ,- .- - . .. . - .. : ..-. - . . .- . - .- ,..- . , .. , .;
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Using the formulae of Section 4 we get

(6 (x))
2 p+ l

(5.3) 2pT2 2p+1 f dx
T" " 0 1O " 6(x) 2p

m~pC2 2pl (6 0(x) )
2 p+ 1

(5.4) 2p€ . 0 f 2p - dx

p I 6(x)2p

(5.5) 2T2 WO

Hence we have

(/p T 1/p(5.6) 2 1/21/p.

2p+l

and

(eo(x))2P+l /

(5.7) X " f 2 dx)T_ (6(x)) 2p

6. OPTIMAL PWSK ]PR SINULATANOUS APPROXIMATION

In previous sections we discussed the problem of the optimal mesh for

approximating u(x,A) for one fixed value of A. We would like to get an

optimal mesh for set of functions u(x,X), A E (A,01). To this end we could

use (4.14) and minimize

2p+1 _ _((x,_))
2p+

(6.1) max W2 (0 ) f 2 dx
x 4XO 1  (6(x))

among all densities 6(x). To find such 6(x) is not easy. Hence approxi-

mately we will take

(X0) ma

(6.2) D (x) = max Do (x,A)
0 1)€,

'-- .- "- -,-- "-/ ., • - "-:, ." -,'-:..'- - -'.- --...- ""...--".".".-"..- ".-"..."....- " " -'.--.........'-..",...-,.. -., -."-...,.,.'..,...., -..-;--" "-*- .'."-,"



*(4.15) 
6o() W 0 0

For large uncertainty P > 1 we get by this technique a nearly unif orm

mesh.

Finally let us mention that under sufficiently strict assumptions our

heuristic reasoning could be given a rigorous base. In addition, we underline

* that although we explained the approach in one dimension, it is valid in more

dimensions, too.

5. THE MESH QUALITY IDICATORS

In the feedback process we would like to use one mesh for largest pos-

sible range of X because of the cost consideration. This leads to the need

of quantitative expression of the quality of the mesh. We will characterize

- the quality by twao indicators. The first one is related to the intensity and

* second to the density.

First, we let

m
(5.1)

m

*where m c is the intensity of the current mesh and m.T the intensity of the

* mesh, having the same density, achieving (exactly) C(A) T . For determining

* Tn (4.14) is used. If C(A) > T, then the mesh is not acceptable and we

* have *' < 1. If * >> 1, then the used mesh is too fine and the cost can be

too high.

We define the second indicator by

m
(5.2) X -

where mo IT is the intensity for the optimal mesh and accuracy T. Clearly

d we have X ;P 1, and X >> 1 indicates that the current mesh has a density

* which is too far to be optimal.

.................................. .. .. .. ... .
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the elememts of the mesh Ak. Then

(4.11) 
W0(x) 6 0W

is the density of the optimal mesh where

(4.12) 0" f D0 (x) dx.
I

D0 (x) will be called the unnormalized optimal density.

Let us assume that the global error 2(A) can be written in the form

(4.13) 2 (A) 2(We

JE A

Then for the density 6(x) and the intensity m - m(A) we have the relation

(4.14) m2 m 2 C(A) - W 0 f 2p dxlm= 1 6W+ I f x

(4.14) expresses the error for the mesh A with the density 6(x) through

the optimal density. Obviously the choice 6(x) 60(x) minimizes the

expression on the right hand side of (4.14) and gives the minimal value 2p+1

, (because f 60 (x)dx - 1). In practice we express 6
0 (x) by the error indica-

tors and (4.10) (4.11). Nevertheless, the error indicators (especially in

more dimensions) are showing a dispersion and a smoothing technique has to be

used. In addition it is useful to assume that we have in (4.14) for disposi-

tion 0(x) + ((x) instead 60(x) only where ((x) expresses the uncer-

tainty in the determination of 60(x) which can be determined by the smooth-

ing process mentioned above; for example, we can assume that k(x)i < ' 0

Now the optimal mesh under this uncertainty minimizes (4.14) for the worst

case of the uncertainty. This leads to the density 600(x)

,*.. . / *. ".'*-'- .-. .'. . v . < . .-- * b ° .. ,. ** . . .* ,. ......... ' . ."-' .. •,...'-' :% :,
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with the constant C such that

(4.7) f 6(x) dx - 1.

The notion of the density function can be obviously easily extended to

n-dimensions.

If the density function is given, then it is not hard to construct a mesh

. with this density 6(x) and given intensity m(A). We shall assume that all

meshes we are dealing with have a density function.

Let us assume now that an error indicator n(J) of every element

J E A of the mesh is computable and it is such that

(4.9) n(J) - le E(J) (1 + o(1))

where gelEO) is the (local) error (in the energy norm) of the interpolant

of u on J. Then we get

(4.9) lim i2(J) = clu(P+)(x)Ii1+ j[ j121+l

with a-priori known constant C. See [8] for more details. Similar situation

occurs in more dimensions. For the error indicators in two dimension we refer

to [2].

The error indicator gives through (4.9) the information about the deriva-

tive of the approximated function u and hence also the density for the

optimal mesh. To this end we define

1

(4.10) D0(x) - lim n(J)

* l o I+0
xEJ

and assume that D0(x) can be well approximated by the error indicators of
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regridding process obtains the ratio P2(k) - 2.5 (see Table 1). Thus it is

more efficient that the previous one.

The process we have shown is of course not the only possible approach and

it needs detailed theoretical and numerical studies in the spirit we explained

-above. We have shown it as an example of application of principles of studying

* the adaptivity.

* 12. CONCLUSIONS

We have shown the main questions associated to the design and analysis of

. the feedback procedures. The theoretical analysis is often not easy. Never-

- theless, every feedback algorithm could be conjectured to be adaptive with

respect to some measures and class of problems and studied theoretically and

experimentally in the direction we explores.
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